Respuesta :
Answer:
[tex]f(x)=\sqrt{x-1}[/tex] -----> Graph C
[tex]f(x)=\sqrt{x}[/tex] -----> Graph A
[tex]f(x)=\sqrt{x}-1[/tex] -----> Graph B
[tex]f(x)=-\sqrt{x}[/tex] -----> Graph D
[tex]f(x)=-\sqrt{x-1}[/tex] -----> Graph E
Step-by-step explanation:
we have
case a) [tex]f(x)=\sqrt{x-1}[/tex]
Find the domain
we know that
The radicand must be greater than or equal to zero
so
[tex]x-1\geq 0[/tex]
[tex]x\geq 1[/tex]
The domain is the interval -----> [1,∞)
All real numbers greater than or equal to 1
The range is the interval -----> [0,∞)
All real numbers greater than or equal to 0
case b) [tex]f(x)=\sqrt{x}[/tex]
Find the domain
we know that
The radicand must be greater than or equal to zero
so
[tex]x\geq 0[/tex]
The domain is the interval -----> [0,∞)
All real numbers greater than or equal to 0
The range is the interval -----> [0,∞)
All real numbers greater than or equal to 0
case c) [tex]f(x)=\sqrt{x}-1[/tex]
Find the domain
we know that
The radicand must be greater than or equal to zero
so
[tex]x\geq 0[/tex]
The domain is the interval -----> [0,∞)
All real numbers greater than or equal to 0
The range is the interval -----> [-1,∞)
All real numbers greater than or equal to -1
case d) [tex]f(x)=-\sqrt{x}[/tex]
Find the domain
we know that
The radicand must be greater than or equal to zero
so
[tex]x\geq 0[/tex]
The domain is the interval -----> [0,∞)
All real numbers greater than or equal to 0
The range is the interval -----> (-∞,0]
All real numbers less than or equal to 0
case e) [tex]f(x)=-\sqrt{x-1}[/tex]
Find the domain
we know that
The radicand must be greater than or equal to zero
so
[tex]x-1\geq 0[/tex]
[tex]x\geq 1[/tex]
The domain is the interval -----> [1,∞)
All real numbers greater than or equal to 1
The range is the interval -----> (-∞,0]
All real numbers less than or equal to 0