Respuesta :

Answer:

[tex]f(x)=\sqrt{x-1}[/tex] -----> Graph C

[tex]f(x)=\sqrt{x}[/tex] -----> Graph A

[tex]f(x)=\sqrt{x}-1[/tex] -----> Graph B

[tex]f(x)=-\sqrt{x}[/tex] -----> Graph D

[tex]f(x)=-\sqrt{x-1}[/tex] -----> Graph E

Step-by-step explanation:

we have

case a) [tex]f(x)=\sqrt{x-1}[/tex]

Find the domain

we know that

The radicand must be greater than or equal to zero

so

[tex]x-1\geq 0[/tex]

[tex]x\geq 1[/tex]

The domain is the interval -----> [1,∞)

All real numbers greater than or equal to 1

The range is the interval ----->  [0,∞)

All real numbers greater than or equal to 0

case b) [tex]f(x)=\sqrt{x}[/tex]

Find the domain

we know that

The radicand must be greater than or equal to zero

so

[tex]x\geq 0[/tex]

The domain is the interval -----> [0,∞)

All real numbers greater than or equal to 0

The range is the interval ----->  [0,∞)

All real numbers greater than or equal to 0

case c) [tex]f(x)=\sqrt{x}-1[/tex]

Find the domain

we know that

The radicand must be greater than or equal to zero

so

[tex]x\geq 0[/tex]

The domain is the interval -----> [0,∞)

All real numbers greater than or equal to 0

The range is the interval ----->  [-1,∞)

All real numbers greater than or equal to -1

case d) [tex]f(x)=-\sqrt{x}[/tex]

Find the domain

we know that

The radicand must be greater than or equal to zero

so

[tex]x\geq 0[/tex]

The domain is the interval -----> [0,∞)

All real numbers greater than or equal to 0

The range is the interval ----->  (-∞,0]

All real numbers less than or equal to 0

case e) [tex]f(x)=-\sqrt{x-1}[/tex]

Find the domain

we know that

The radicand must be greater than or equal to zero

so

[tex]x-1\geq 0[/tex]

[tex]x\geq 1[/tex]

The domain is the interval -----> [1,∞)

All real numbers greater than or equal to 1

The range is the interval ----->  (-∞,0]

All real numbers less than or equal to 0