Respuesta :

Answer:

 [tex]f(-\frac{1}{2}) = 1[/tex]

[tex]g(-\frac{1}{2} ) = -\frac{3}{2}[/tex]

Step-by-step explanation:

Given the function [tex]f(x) = 4x + 3[/tex] and the function [tex]g(x) = 3x[/tex], to evaluate for [tex]x=-\frac{1}{2}[/tex], you need to substitute it into each function.

Then, for the function f(x), when  [tex]x=-\frac{1}{2}[/tex], you get:

 [tex]f(-\frac{1}{2}) = 4(-\frac{1}{2}) + 3[/tex]

 [tex]f(-\frac{1}{2}) = 4(-\frac{1}{2}) + 3[/tex]

 [tex]f(-\frac{1}{2}) = -\frac{4}{2}+ 3[/tex]

 [tex]f(-\frac{1}{2}) = -2 + 3[/tex]

 [tex]f(-\frac{1}{2}) = 1[/tex]

For the function g(x), when  [tex]x=-\frac{1}{2}[/tex], you get:

[tex]g(-\frac{1}{2} ) = 3(-\frac{1}{2})[/tex]

 [tex]g(-\frac{1}{2} ) = -\frac{3}{2}[/tex]

Answer:

f(-1/2) = 1

g(-1/2) =-3/2

Step-by-step explanation:

f(x) = 4x+3

Let x = -1/2

f(-1/2) = 4(-1/2) +3

f(-1/2) = -2 +3

f(-1/2) =1

g(-1/2) = 3(-1/2)

          = -3/2  

ACCESS MORE