Respuesta :

Answer:

D=[tex]\sqrt{(147-30\sqrt{10}}[/tex]

Step-by-step explanation:

Here we are required to find the distance between two coordinates. We will use the distance formula to find the distance

The distance formula is given as

[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Here we are given two coordinates as

[tex](6,5\sqrt{5} ) , (4,3\sqrt{2} )[/tex]

Substituting these values in the Distance formula given above we get

[tex]D=\sqrt{(6-4)^2+(5\sqrt{5} -3\sqrt{2}) ^2}[/tex]

[tex]D=\sqrt{(2)^2+(5\sqrt{5})^2+(3\sqrt{2})^2-2*5\sqrt{5}*3\sqrt{2}}\\[/tex]

[tex]D=\sqrt{4+125+18-2*15\sqrt{10}}\\D=\sqrt{147-30\sqrt{10}}\\[/tex]

Hence this is our answer

answer :

2 square of 3 is the answer

step-by-step explanation :

[tex]\sqrt({x} _{2} - x_{1})^{2} + (y_{2} - y_{1})^{2} \\\\\sqrt({4} - 6})^{2} + (3\sqrt{2} - 5\sqrt{2} )^{2} \\\\= \sqrt(-2})^{2} + (-2\sqrt{2} )^{2} \\\\\\= \sqrt4 + 8 \\\\\\\\\\= \sqrt12 \\\\\\\\= 2\sqrt{3}[/tex]

ACCESS MORE