Answer:
[tex]\boxed{\text{10.0 g}}[/tex]
Explanation:
The balanced equation is
CaCO₃(s) ⇌ CaO(s) + CO₂(g); Kp = 1.16
Calculate Kc
T= 800 °C = 1073 K; Δn= 1
[tex]K_{\text{p}} = K_{\text{c}}{RT}^{\Delta n}\\\\1.1 = K_{c}{(RT)}^{1}\\\\K_{c} = \dfrac{1.1}{RT} = \dfrac{1.1}{8.314\times 1073}= \dfrac{1.1}{8921} = 1.233 \times 10^{-4}[/tex]
Equilibrium concentration of CO₂
[tex]K_{c} = [\text{CO}_{2}] = 1.233 \times 10^{-4}[/tex]
Moles of CO₂ formed
[tex]n= \text{5.00 L } \times \dfrac{\text{1.233 $\times$ 10$^{-4}$ \text{ mol} }}{\text{1 L}} = 6.155 \times 10^{-4}\text{ mol}[/tex]
Moles of CaCO₃ used up
Moles of CaCO₃ used up = moles of CO₂ formed = 6.155 × 10⁻⁴ mol
Mass of CaCO₃ used up
[tex]m = 6.155 \times 10^{-4}\text{ mol } \times \dfrac{\text{100.09 g}}{\text{1 mol}} = \text{0.0616 g}[/tex]
Moles of CaO formed
Moles of CaO formed = moles of CO₂ formed = 6.155 × 10⁻⁴ mol
Mass of CaO formed
[tex]m = 6.155 \times 10^{-4}\text{ mol } \times \dfrac{\text{56.08 g}}{\text{1 mol}} = \text{0.0345 g}[/tex]
Mass of solid at equilibrium
m = 10.0 g – 0.0616 g + 0.0345 g = 10.0 g
[tex]\text{The mass of solid remaining at equilibrium is } \boxed{\textbf{10.0 g}}[/tex]