Respuesta :

ANSWER

[tex]- \frac{2}{3} [/tex]

EXPLANATION

The given given equation is

[tex]2y - 3x = 8[/tex]

We need to rewrite this equation in the slope-intercept form:

[tex]y = mx + b[/tex]

We add 3x to both sides.

[tex]2y - 3x + 3x=8 + 3x[/tex]

[tex] \implies \: 2y = 3x + 8[/tex]

We divide through by 2 to get,

[tex]y = \frac{3}{2}x + 4[/tex]

The slope of this line is

[tex]m = \frac{3}{2} [/tex]

Let the slope of the line perpendicular to this line be 'n' .

Then the product of the slopes of two perpendicular lines is always negative 1.

[tex]m \times n = - 1[/tex]

[tex] \implies \: \frac{3}{2} n = - 1[/tex]

[tex]\implies \: \frac{2}{3} \times \frac{3}{2}n = - 1 \times \frac{2}{3} [/tex]

[tex]n = - \frac{2}{3} [/tex]

Therefore the slope of the new line is

[tex] - \frac{2}{3} [/tex]

Answer:

C) -2/3

Step-by-step explanation:

2y-3x=8

2y=3x-8

Divide 2 from each number to get:

y=3/2-4

The opposite reciprocal of 3/2 is -2/3

ACCESS MORE