A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d = 9.00 mm and dielectric constant k = 3.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85x10-12 C2/N.m2 . Find the energy U1 of the dielectric-filled capacitor.

Respuesta :

Answer:

[tex]9.96\cdot 10^{-10}J[/tex]

Explanation:

The capacitance of the parallel-plate capacitor is given by

[tex]C=\epsilon_0 k \frac{A}{d}[/tex]

where

ϵ0 = 8.85x10-12 C2/N.m2 is the vacuum permittivity

k = 3.00 is the dielectric constant

[tex]A=30.0 cm^2 = 30.0\cdot 10^{-4}m^2[/tex] is the area of the plates

d = 9.00 mm = 0.009 m is the separation between the plates

Substituting,

[tex]C=(8.85\cdot 10^{-12}F/m)(3.00 ) \frac{30.0\cdot 10^{-4} m^2}{0.009 m}=8.85\cdot 10^{-12} F[/tex]

Now we can calculate the energy of the capacitor, given by:

[tex]U=\frac{1}{2}CV^2[/tex]

where

C is the capacitance

V = 15.0 V is the potential difference

Substituting,

[tex]U=\frac{1}{2}(8.85\cdot 10^{-12}F)(15.0 V)^2=9.96\cdot 10^{-10}J[/tex]

ACCESS MORE