Answer:
[tex]9.96\cdot 10^{-10}J[/tex]
Explanation:
The capacitance of the parallel-plate capacitor is given by
[tex]C=\epsilon_0 k \frac{A}{d}[/tex]
where
ϵ0 = 8.85x10-12 C2/N.m2 is the vacuum permittivity
k = 3.00 is the dielectric constant
[tex]A=30.0 cm^2 = 30.0\cdot 10^{-4}m^2[/tex] is the area of the plates
d = 9.00 mm = 0.009 m is the separation between the plates
Substituting,
[tex]C=(8.85\cdot 10^{-12}F/m)(3.00 ) \frac{30.0\cdot 10^{-4} m^2}{0.009 m}=8.85\cdot 10^{-12} F[/tex]
Now we can calculate the energy of the capacitor, given by:
[tex]U=\frac{1}{2}CV^2[/tex]
where
C is the capacitance
V = 15.0 V is the potential difference
Substituting,
[tex]U=\frac{1}{2}(8.85\cdot 10^{-12}F)(15.0 V)^2=9.96\cdot 10^{-10}J[/tex]