Respuesta :
Answer:
y - 1/3 = 3/4(x - 4)
Step-by-step explanation:
We know that the general equation of a line is the following:
y - yo = m(x-xo), where 'm' represents the slope of the line, and (xo, yo) is any point that belongs to the line.
Then, the equation of the line that passes through (4, 1/3) and has a slope of 3/4 is: y - 1/3 = 3/4(x - 4)
For this case we have that by definition, the slope-intersection equation of a line is given by:
[tex]y = mx + b[/tex]
Where:
m: It's the slope
b: It is the cut point with the y axis.
They tell us as data that:
[tex]m = \frac {3} {4}[/tex]
Now the equation is:
[tex]y = \frac {3} {4} x + b[/tex]
We substitute the point to find "b":
[tex](4, \frac {1} {3})[/tex]
[tex]\frac {1} {3} = \frac {3} {4} (4) + b[/tex]
[tex]b = \frac {1} {3} -3\\b = - \frac {8} {3}[/tex]
Finally the equation is:
[tex]y = \frac {3} {4}x - \frac {8} {3}[/tex]
In point-slope form the equation is:
[tex]y- \frac {1} {3} = \frac {3} {4} (x-4)[/tex]
Answer:
[tex]y = \frac {3} {4}x - \frac {8} {3}[/tex]