Respuesta :

Answer:

The roots of the quadratic equation are

[tex]x=-3+3\sqrt{2}[/tex]

[tex]x=-3-3\sqrt{2}[/tex]

Step-by-step explanation:

we have

[tex]x^{2} +6x-9=0[/tex]

we know that

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2} +6x-9=0[/tex]

so

[tex]a=1\\b=6\\c=-9[/tex]

substitute in the formula

[tex]x=\frac{-6(+/-)\sqrt{6^{2}-4(1)(-9)}} {2(1)}[/tex]

[tex]x=\frac{-6(+/-)\sqrt{72}} {2}[/tex]

[tex]x=\frac{-6(+/-)6\sqrt{2}} {2}[/tex]

[tex]x=-3(+/-)3\sqrt{2}[/tex]

[tex]x=-3(+)3\sqrt{2}[/tex]

[tex]x=-3(-)3\sqrt{2}[/tex]

Given equation is :

[tex]x^{2}+6x-9=0[/tex]

We will solve this quadratic equation, using the formula:

[tex]x1,2=\frac{-b+\sqrt{b^{2}-4ac}}{2a}[/tex] and

[tex]x1,2=\frac{-b-\sqrt{b^{2}-4ac}}{2a}[/tex]

Now, putting a=1 , b=6 and c =-9 we get

[tex]x=\frac{-6+\sqrt{6^{2}-4*1(-9)}}{2*1}[/tex] and

[tex]x=\frac{-6-\sqrt{6^{2}-4*1(-9)}}{2*1}[/tex]

Final solutions are:  [tex]x=3(\sqrt{2}-1)[/tex] and

[tex]x=-3(\sqrt{2}+1)[/tex]