Part A: Factor 2x2y2 + 6xy2 + 18x2y2. Show your work.

Part B: Factor x2 + 10x + 25. Show your work.

Part C: Factor x2 − 36. Show your work.

Respuesta :

frika

Answer:

A.

[tex]2xy^2(10x+3)[/tex]

B.

[tex](x+5)^2[/tex]

C.

[tex](x-6)(x+6)[/tex]

Step-by-step explanation:

Part A. The expression [tex]2x^2y^2+6xy^2+18x^2y^2[/tex] consists of three terms: [tex]2x^2y^2,\ \ 6xy^2,\ \ 18x^2y^2[/tex] The first and the last terms are like terms, we can add them:

[tex]2x^2y^2+18x^2y^2=20x^2y^2[/tex]

Now,

[tex]20x^2y^2=2xy^2\cdot 10x\\ \\6xy^2=2xy^2\cdot 3[/tex]

So,

[tex]2x^2y^2+6xy^2+18x^2y^2=2xy^2(10x+3)[/tex]

Part B. The expression [tex]x^2+10x+25[/tex] is a square of [tex]x+5,[/tex] so

[tex]x^2+10x+25=(x+5)^2[/tex]

Part C. Use the difference of squares formula:

[tex]x^2-36=x^2-6^2=(x-6)(x+6)[/tex]

RELAXING NOICE
Relax