Answer:
A.
[tex]2xy^2(10x+3)[/tex]
B.
[tex](x+5)^2[/tex]
C.
[tex](x-6)(x+6)[/tex]
Step-by-step explanation:
Part A. The expression [tex]2x^2y^2+6xy^2+18x^2y^2[/tex] consists of three terms: [tex]2x^2y^2,\ \ 6xy^2,\ \ 18x^2y^2[/tex] The first and the last terms are like terms, we can add them:
[tex]2x^2y^2+18x^2y^2=20x^2y^2[/tex]
Now,
[tex]20x^2y^2=2xy^2\cdot 10x\\ \\6xy^2=2xy^2\cdot 3[/tex]
So,
[tex]2x^2y^2+6xy^2+18x^2y^2=2xy^2(10x+3)[/tex]
Part B. The expression [tex]x^2+10x+25[/tex] is a square of [tex]x+5,[/tex] so
[tex]x^2+10x+25=(x+5)^2[/tex]
Part C. Use the difference of squares formula:
[tex]x^2-36=x^2-6^2=(x-6)(x+6)[/tex]