Respuesta :
Answer:
ΔS⁰ = -198.3 J/K
Explanation:
N₂(g) + 3H₂(g) → 2NH₃(g)
S⁰: N₂(g) = 1mole(191.5J/mole·K) = 191.5J/K
S⁰: 3H₂(g) = 3moles(130.6J/mole·K) = 391.8J/K
S⁰: 2NH₃(g) = 2moles(192.5J/mole·K) = 385J/K
ΔS⁰ = ∑n·S⁰(Products) - ∑n·S⁰(Reactants
=[385J/K] - [191.5J/K + 391.8J/K]
= (385 - 191.5 - 391.8)J/K
= -198.3J/K
Answer: The [tex]\Delta S^o[/tex] of the reaction is [tex]-198.3Jmol^{-1}K^{-1}[/tex]
Explanation:
Entropy change of the reaction is defined as the difference between the total entropy change of the products and the total entropy change of the reactants.
Mathematically,
[tex]\Delta S_{rxn}=\sum [n\times \Delta S^o_{products}]-\sum [n\times \Delta S^o_{reactants}][/tex]
For the given chemical equation:
[tex]N_2(g)+3H_2(g)\rightarrow 2NH_3(g)[/tex]
We are given:
[tex]\Delta S^o_{NH_3}=192.5Jmol^{-1}K^{-1}\\\Delta S^o_{H_2}=130.6Jmol^{-1}K^{-1}\\\Delta S^o_{N_2}=191.5Jmol^{-1}K^{-1}[/tex]
Putting values in above equation, we get:
[tex]\Delta S^o_{rxn}=[(2\times \Delta S^o_{NH_3})]-[(1\times \Delta S^o_{N_2})+(3\times \Delta S^o_{H_2})][/tex]
[tex]\Delta S^o=[(2\times 192.5)]-[(1\times 191.5)+(3\times 130.6)]=-198.3Jmol^{-1}K^{-1}[/tex]
Hence, the [tex]\Delta S^o[/tex] of the reaction is [tex]-198.3Jmol^{-1}K^{-1}[/tex]