In the diagram below, AB and bc are tangent to o. What is the measure of ac?

Answer:
Option D. [tex]150\°[/tex]
Step-by-step explanation:
we know that
The measurement of the outer angle is the semi-difference of the arcs it encompasses.
[tex]m\angle ABC=\frac{1}{2}[arc\ ADC-arc\ AC][/tex]
substitute the given values
[tex]30\°=\frac{1}{2}[210\°-arc\ AC][/tex]
[tex]60\°=[210\°-arc\ AC][/tex]
[tex]arc\ AC=210\°-60\°=150\°[/tex]
Answer:
Option (D) is correct.
Step-by-step explanation:
OA is perpendicular to AB
OC is perpendicular to BC
Radius from the center is perpendicular to the tangent.
In quadrilateral ABCO,
∠ABC+∠BCO+∠AOC+∠OAB=360°
30°+90°+∠AOC+90°=360°
∠AOC+210°=360°
∠AOC=360°-210°
∠AOC=150°
Hence, arc AC=150°
Thus, the correct answer is option (D)