bearing in mind that
standard form for a linear equation means
• all coefficients must be integers, no fractions
• only the constant on the right-hand-side
• all variables on the left-hand-side, sorted
• "x" must not have a negative coefficient
[tex]\bf P(\stackrel{x_1}{0}~,~\stackrel{y_1}{-4})\qquad Q(\stackrel{x_2}{5}~,~\stackrel{y_2}{1}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{1-(-4)}{5-0}\implies \cfrac{1+4}{5}\implies \cfrac{5}{5}\implies 1 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-(-4)=1(x-0)\implies y+4=x \\\\\\ y=x-4\implies -x+y=-4\implies \stackrel{\textit{standard form}}{x-y=4}[/tex]