Respuesta :

Answer:

[tex]b = 17[/tex]

Step-by-step explanation:

For this triangle we have to

[tex]a=18.2\\B=62\°\\C=48\°[/tex]

We want to find the length of b

We know that the sum of the internal angles of a triangle is 180 °

So

[tex]A + 62 +48=180\\\\A=180-62-48\\\\A=70\°[/tex]

Now we use the sine theorem to find the length of b:

[tex]\frac{sin(A)}{a}=\frac{sin(B)}{b}=\frac{sin(C)}{c}[/tex]

Then:

[tex]\frac{sin(A)}{a}=\frac{sin(B)}{b}\\\\b=\frac{sin(B)}{\frac{sin(A)}{a}}\\\\b=a*\frac{sin(B)}{sin(A)}\\\\b=(18.2)\frac{sin(62)}{sin(70)}\\\\b=17[/tex]