Respuesta :

Answer:

[tex]\implies m\angle DAC=30\degree[/tex].

Step-by-step explanation:

DC meets  the circle at right angles because it is a tangent.

Triangle COD is a right triangle, with OD being the hypotenuse.

[tex]\cos m\angle COD=\frac{OC}{OD}[/tex].

But [tex]OC=\frac{1}{2}OD[/tex],

[tex]\implies \cos m\angle COD=\frac{\frac{1}{2}OD}{OD}[/tex].

[tex]\implies \cos m\angle COD=\frac{1}{2}[/tex].

[tex]\implies m\angle COD=\cos ^{-1}(\frac{1}{2})[/tex].

[tex]\implies m\angle COD=60\degree[/tex].

But [tex]m\angle DAC=\frac{1}{2} m\angle COD[/tex].

[tex]\implies m\angle DAC=\frac{1}{2}(60\degree)[/tex].

[tex]\implies m\angle DAC=30\degree[/tex].

Answer:

See below

Step-by-step explanation:

Actully, incase some people input it wrong, the answer is 30 degrees. DEGREES<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

so input 30 degrees

Ver imagen electricfox246
ACCESS MORE