Respuesta :
Answer:
The hang time is 0.63 seconds
Step-by-step explanation:
We want to find out what the cricket's fall time is and we have the function that describes its height as a function of time.
The cricket is on the ground when its height is equal to zero. Therefore we must equal h to zero and solve the equation for t ..
[tex]h=-16t^2+10t\\\\-16t^2 +10t=0\\\\\\[/tex]
We take t as a common factor
[tex]-16t^2 +10t=0\\\\t(10-16t)=0[/tex]
Then the height is zero when t = 0 and when (10-16t) = 0
[tex]t=0[/tex]
[tex]10-16t= 0[/tex]
[tex]10 = 16t[/tex]
[tex]t=\frac{10}{16}\\\\t= 0.63\ sec[/tex]
At t = 0 seconds the cricket is still on the ground.
Then the cricket is in the air and after 0.63 seconds the cricket falls back to the ground
Complete the square:
[tex]-16t^2+10t=-16\left(t^2-\dfrac58t\right)=-16\left(t^2-\dfrac58t+\dfrac{25}{256}-\dfrac{25}{256}\right)=-16\left(t-\dfrac5{16}\right)^2+\dfrac{25}{16}[/tex]
That is, [tex]h(t)[/tex] has a maximum value of [tex]\dfrac{25}{16}\approx1.6[/tex] ft when [tex]t=\dfrac5{16}\approx0.3[/tex] s. It takes the cricket twice as much time to jump up to its maximum height and return to the ground, so that the hang time is about 0.6 s.