Respuesta :
ANSWER
The points (1,2) and (7,2) lie on the given curve.
EXPLANATION
The given parametric equations are:
[tex]x = 3t + 4[/tex]
and
[tex]y = 2 {t}^{2} [/tex]
We make t the subject in the first equation to obtain:
[tex]t = \frac{x - 4}{3} [/tex]
We substitute this into the second equation to get:
[tex]y =2{(\frac{x - 4}{3} )}^{2} [/tex]
When x=1,
[tex]y = 2 {(\frac{1 - 4}{3} )}^{2} = 2[/tex]
When x=2
[tex]y =2{(\frac{2- 4}{3} )}^{2} = \frac{8}{9} [/tex]
When x=7,
[tex]y =2{(\frac{7 - 4}{3} )}^{2} = 2[/tex]
Therefore the points (1,2) and (7,2) lie on the given curve.
The points are on a plane curve described by the following set of parametric equations are:(1,2), (7,2).
What is Parametric equation?
Given:
x= 3t+4 and y= 2t²
Hence:
x=3t +4 = t=(x-4)/3
y=2t² =y=2[(x-4)/3]
y=2[(x-4)/3]²
When x=1
y=2(1-4/3)²
y=2(-3/3)²
y=2(1)
y=2
When x=7
y=2(7-4/3)²
y=2(3/3)²
y=2(1)
y=2
Therefore the points are on a plane curve described by the following set of parametric equations are:(1,2), (7,2).
Learn more about Parametric equation here:https://brainly.com/question/51019
#SPJ5