Respuesta :
The ODE
[tex]M(x,y)\,\mathrm dx+N(x,y)\,\mathrm dy=0[/tex]
is exact if
[tex]\dfrac{\partial M}{\partial y}=\dfrac{\partial N}{\partial x}[/tex]
We have
[tex]M=-xy\sin x+2y\cos x\implies M_y=-x\sin x+2\cos x[/tex]
[tex]N=2x\cos x\implies N_x=2\cos x-2x\sin x[/tex]
so the ODE is indeed not exact.
Multiplying both sides of the ODE by [tex]\mu(x,y)=xy[/tex] gives
[tex]\mu M=-x^2y^2\sin x+2xy^2\cos x\implies(\mu M)_y=-2x^2y\sin x+4xy\cos x[/tex]
[tex]\mu N=2x^2y\cos x\implies(\mu N)_x=4xy\cos x-2x^2y\sin x[/tex]
so that [tex](\mu M)_y=(\mu N)_x[/tex], and the modified ODE is exact.
We're looking for a solution of the form
[tex]\Psi(x,y)=C[/tex]
so that by differentiation, we should have
[tex]\Psi_x\,\mathrm dx+\Psi_y\,\mathrm dy=0[/tex]
[tex]\implies\begin{cases}\Psi_x=\mu M\\\Psi_y=\mu N\end{cases}[/tex]
Integrating both sides of the second equation with respect to [tex]y[/tex] gives
[tex]\Psi_y=2x^2y\cos x\implies\Psi=x^2y^2\cos x+f(x)[/tex]
Differentiating both sides with respect to [tex]x[/tex] gives
[tex]\Psi_x=-x^2y^2\sin x+2xy^2\cos x=2xy^2\cos x-x^2y^2\sin x+\dfrac{\mathrm df}{\mathrm dx}[/tex]
[tex]\implies\dfrac{\mathrm df}{\mathrm dx}=0\implies f(x)=c[/tex]
for some constant [tex]c[/tex].
So the general solution to this ODE is
[tex]x^2y^2\cos x+c=C[/tex]
or simply
[tex]x^2y^2\cos x=C[/tex]
We are to verify and confirm if the given differential equations are exact or not. Then solve for the exact equation.
The first differential equation says:
[tex]\mathbf{(-xy \ sin x + 2y \ cos x) dx + 2(x \ cos x) dy = 0 }[/tex]
Recall that:
A differential equation that takes the form [tex]\mathbf{M(x,y)dt + N(x, y)dy = 0 }[/tex] will be exact if and only if:
- [tex]\mathbf{\dfrac{\partial M }{\partial y} = \dfrac{\partial N }{\partial x}}[/tex]
From equation (1), we can represent M and N as follows:
- [tex]\mathbf{M = (-xy \ sin x + 2y \ cos x)}[/tex]
- [tex]\mathbf{N = (2x \ cos x)}[/tex]
Thus, taking the differential of M and N, we have:
[tex]\mathbf{ \dfrac{\partial M}{\partial y }= M_y = -x sin x + 2cos x}[/tex]
[tex]\mathbf{ \dfrac{\partial N}{\partial x }= N_x = 2 cos x + 2x sin x}[/tex]
From above, it is clear that:
[tex]\mathbf{\dfrac{\partial M }{\partial y} \neq \dfrac{\partial N }{\partial x}}[/tex]
∴
We can conclude that the equation is not exact.
Now, after multiplying the given differential equation in (1) by the integrating factor μ(x, y) = xy, we have:
- [tex]\mathbf{ = \mathsf{(-x^2y^2 sin x + 2xy^2cos x ) dx +(2x^2ycos x ) dy = 0 --- (2)}}[/tex]
Representing the equation into form M and N, then:
[tex]\mathbf{M = -x^22y^2 sin x +2xy^2 cos x}[/tex]
[tex]\mathbf{N = 2x^2y cos x}[/tex]
Taking the differential, we have:
[tex]\mathbf{\dfrac{\partial M}{\partial y }= M_y = -2x^2y sin x + 4xy cos x }[/tex]
[tex]\mathbf{\dfrac{\partial N}{\partial x} =N_x= 4xycos \ x -2x^2 y sin x}[/tex]
Here;
[tex]\mathbf{\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x} }[/tex]
Therefore, we can conclude that the second equation is exact.
Now, the solution of the second equation is as follows:
[tex]\int_{y } M dx + \int (not \ containing \ 'x') dy = C[/tex]
[tex]\rightarrow \int_{y } (-x^2y^2 sin(x) +2xy^2 cos (x) ) dx + \int(0)dy = C[/tex]
[tex]\rightarrow-y^2 \int x^2 sin(x) dx +2y ^2 \int x cos (x) dx = C[/tex] ---- (3)
Taking integrations by parts:
[tex]\int u v dx = u \int v dx - \int (\dfrac{du}{dx} \int v dx) dx[/tex]
∴
[tex]\int x^2 sin (x) dx = x^2 \int sin(x) dx - \int (\dfrac{d}{dx}(x^2) \int (sin \ (x)) dx) dx[/tex]
[tex]\to x^2 (-cos (x)) \ - \int 2x (-cos \ (x)) \ dx[/tex]
[tex]\to -x^2 (cos (x)) \ + \int 2x \ cos \ (x) \ dx[/tex] ----- replace this equation into (3)
∴
[tex]\rightarrow-y^2( -x^2 cos (x) \ + \int 2x \ cos \ (x) \ dx) +2y ^2 \int x cos (x) dx = C[/tex]
[tex]\mathbf{\rightarrow -x^2 y^2 cos (x) \ -2y ^2 \int x \ cos \ (x) \ dx +2y ^2 \int x cos (x) dx = C}[/tex]
[tex]\mathbf{x^2y^2 cos (x) = C\ \text{ where C is constant}}[/tex]
Therefore, from the explanation, we've can conclude that the first equation is not exact and the second equation is exact.
Learn more about differential equations here:
https://brainly.com/question/353770?referrer=searchResults