Write the definite integral for the summation: the limit as n goes to infinity of the summation from k equals 1 to n of the product of the square of the quantity 1 plus k over n squared and 1 over n.
the integral from x equals 0 to 1 of x squared, dx
the integral from x equals 1 to 2 of the quantity x plus 1 squared, dx
the integral from x equals 1 to 2 of x squared, dx
the integral from x equals 2 to 1 of x squared, dx

Respuesta :

Sounds like you have

[tex]\displaystyle\lim_{n\to\infty}\sum_{k=1}^n\left(1+\frac kn\right)^2\frac1n[/tex]

which translates to the sum of the areas of [tex]n[/tex] rectangles with dimensions [tex]\left(1+\dfrac kn\right)^2[/tex] (height) and [tex]\dfrac1n[/tex] (width). This is the right-endpoint Riemann sum for approximating the area under [tex]x^2[/tex] over the interval [1, 2].

Answer:

Option C

Step-by-step explanation:

We are given that

[tex]\lim_{n\rightarrow\infty}\sum_{k=1}^{n}(1+\frac{k}{n})^2\times \frac{1}{n}[/tex]

We have to find the definite integral for the given summation.

We know that

[tex]\lim_{n\rightarrow \infty}\sum_{k=a}^{n}f(a+k\frac{b-a}{n})(\frac{b-a}{n}=\int_{a}^{b}f(x)dx[/tex]

Using the formula

a=1

[tex]\frac{b-a}{n}=\frac{b-1}{n}[/tex]

[tex]\frac{b-1}{n}=\frac{1}{n}[/tex]

[tex]b-1=1[/tex]

[tex]b=1+1=2[/tex]

[tex]\lim_{n\rightarrow\infty}\sum_{k=1}^{n}(1+\frac{k}{n})^2\times \frac{1}{n}=\int_{1}^{2}x^2 dx[/tex]

Option C is true.

ACCESS MORE