Respuesta :

Answer:

[tex]y=3x^{2}-18x-48[/tex]

Step-by-step explanation:

we know that

The equation of a vertical parabola in factored form is equal to

[tex]y=a(x-x1)(x-x2)[/tex]

where

a is a coefficient

x1 an x2 are the roots or x-intercepts

In this problem we have

[tex]x1=8,x2=-2[/tex]

substitute

[tex]y=a(x-8)(x+2)[/tex]

with the y-intercept (0,-48) find the value of a

substitute

[tex]-48=a(0-8)(0+2)[/tex]

[tex]-48=-16a[/tex]

[tex]a=3[/tex]

The equation is equal to

[tex]y=3(x-8)(x+2)\\ \\y=3(x^{2}+2x-8x-16)\\ \\ y=3(x^{2} -6x-16)\\ \\y=3x^{2}-18x-48[/tex]

Answer: fx=3(x-8)(x+2) or answer C

Step-by-step explanation:

bc i said so