Respuesta :
Answer:
[tex]y=3x^{2}-18x-48[/tex]
Step-by-step explanation:
we know that
The equation of a vertical parabola in factored form is equal to
[tex]y=a(x-x1)(x-x2)[/tex]
where
a is a coefficient
x1 an x2 are the roots or x-intercepts
In this problem we have
[tex]x1=8,x2=-2[/tex]
substitute
[tex]y=a(x-8)(x+2)[/tex]
with the y-intercept (0,-48) find the value of a
substitute
[tex]-48=a(0-8)(0+2)[/tex]
[tex]-48=-16a[/tex]
[tex]a=3[/tex]
The equation is equal to
[tex]y=3(x-8)(x+2)\\ \\y=3(x^{2}+2x-8x-16)\\ \\ y=3(x^{2} -6x-16)\\ \\y=3x^{2}-18x-48[/tex]
Answer: fx=3(x-8)(x+2) or answer C
Step-by-step explanation:
bc i said so