Please help! ASAP!!!
![Please help ASAP class=](https://us-static.z-dn.net/files/d05/bae006725549353718d56e66fd330cee.png)
Answer:
Final answer is [tex]-112\cdot\sqrt{2}a^5[/tex].
Step-by-step explanation:
Given expression is [tex](a-\sqrt{2})^8[/tex].
Now we need to find the fourth term of the given expression [tex](a-\sqrt{2})^8[/tex]. So apply the nth term formula using binomial expansion.
exponent n=8
4th term means we use r=4-1=3
x=2, [tex]y=-\sqrt{2}[/tex]
rth term in expansion of [tex](x+y)^n[/tex] is given by formula:
[tex]\frac{n!}{\left(n-r\right)!\cdot r!}x^{\left(n-r\right)}\cdot y^r[/tex]
[tex]=\frac{8!}{\left(8-3\right)!\cdot3!}\cdot a^{\left(8-3\right)}\cdot\left(-\sqrt{2}\right)^3[/tex]
[tex]=\frac{8!}{5!\cdot3!}\cdot a^5\cdot\left(-2\sqrt{2}\right)[/tex]
[tex]=\frac{40320}{120\cdot6}\cdot a^5\cdot\left(-2\sqrt{2}\right)[/tex]
[tex]=56\cdot a^5\cdot\left(-2\sqrt{2}\right)[/tex]
[tex]=-112a^5\cdot\sqrt{2}[/tex]
[tex]=-112\cdot\sqrt{2}a^5[/tex]
Hence final answer is [tex]-112\cdot\sqrt{2}a^5[/tex].