Find the inverse of the function below and write it in the formyequals=f Superscript negative 1 Baseline left parenthesis x right parenthesisf−1(x).​(b) Verify the relationshipsf(f^-1(x)) and f^-1(f(x))=x​f(x)=3x+5(a) f^-1(x)=.....

Respuesta :

Answer:

a. [tex]f^{-1}(x)=\frac{x-5}{3}[/tex].

b. See below

Step-by-step explanation:

The given function is: [tex]f(x)=3x+5[/tex]

To find the inverse function, we let [tex]y=3x+5[/tex].

We interchange x and y to obtain:  [tex]x=3y+5[/tex].

We now solve for y;

First add -5 to both sides of the equation;

[tex]x-5=3y[/tex].

Divide both sides by 3

[tex]\frac{x-5}{3}=y[/tex].

Or

[tex]y=\frac{x-5}{3}[/tex].

The inverse function is [tex]f^{-1}(x)=\frac{x-5}{3}[/tex].

b.

Let us now verify that;

[tex]f^{-1}(f(x))=x[/tex]

[tex]\implies f^{-1}(f(x))=\frac{3x+5-5}{3}[/tex]

[tex]\implies f^{-1}(f(x))=\frac{3x}{3}[/tex]

[tex]\implies f^{-1}(f(x))=\frac{x}{1}[/tex]

[tex]\implies f^{-1}(f(x))=x[/tex]

[tex]\boxed{Q.E.D}[/tex]

ACCESS MORE