Help me out here please! Thanks.
![Help me out here please Thanks class=](https://us-static.z-dn.net/files/d3c/5293d4cf6adfbccdccda4761fe5e2f67.png)
Answer:
A. [tex]\frac{1}{5} log_{3}x +log_{3}y[/tex]
Step-by-step explanation:
We have the expression
[tex]log_{3} (\sqrt[5]{x} *y)[/tex]
As these two values are being multiplied, we can separate the two and the sum of them will be equal to the multiplied version
[tex]log_{3}\sqrt[5]{x} +log_{3}y[/tex]
The [tex]\sqrt[5]{x}[/tex] can be rewritten as [tex]x^{\frac{1}{5} }[/tex]. This allows us to use the exponent rule. This means that it can be written as
[tex]\frac{1}{5} log_{3}x +log_{3}y[/tex]
Answer:
A. [tex] \dfrac{1}{5} \log_3 x + \log_3 y [/tex]
Step-by-step explanation:
[tex] \log_3(\sqrt[5]{x} \cdot y) = [/tex]
The log of a product is the sum of the logs.
[tex] = \log_3 \sqrt[5]{x} + \log_3 y [/tex]
Now, write the root as a rational power.
[tex] = \log_3 x^\frac{1}{5} + \log_3 y [/tex]
The log of a power is the the exponent times the log of the base.
[tex] = \dfrac{1}{5} \log_3 x + \log_3 y [/tex]