Respuesta :

Answer:

A. [tex]\frac{1}{5} log_{3}x +log_{3}y[/tex]

Step-by-step explanation:

We have the expression

[tex]log_{3} (\sqrt[5]{x} *y)[/tex]

As these two values are being multiplied, we can separate the two and the sum of them will be equal to the multiplied version

[tex]log_{3}\sqrt[5]{x} +log_{3}y[/tex]

The [tex]\sqrt[5]{x}[/tex] can be rewritten as [tex]x^{\frac{1}{5} }[/tex]. This allows us to use the exponent rule. This means that it can be written as

[tex]\frac{1}{5} log_{3}x +log_{3}y[/tex]

Answer:

A. [tex] \dfrac{1}{5} \log_3 x + \log_3 y [/tex]

Step-by-step explanation:

[tex] \log_3(\sqrt[5]{x} \cdot y) = [/tex]

The log of a product is the sum of the logs.

[tex] = \log_3 \sqrt[5]{x} + \log_3 y [/tex]

Now, write the root as a rational power.

[tex] = \log_3 x^\frac{1}{5} + \log_3 y [/tex]

The log of a power is the the exponent times the log of the base.

[tex] = \dfrac{1}{5} \log_3 x + \log_3 y [/tex]