Respuesta :

gmany

Answer:

[tex]\large\boxed{A=25\pi}[/tex]

Step-by-step explanation:

The formula of an area of a circle:

[tex]A=\pi r^2[/tex]

r - radius

We have the center A(-3, 3) and the point on the circle B(1, 6).

The radius is equal to the distance between the center and the any point on the circle.

The formula of a distance between two points:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Substitute:

[tex]r=\sqrt{(1-(-3))^2+(6-3)^2}=\sqrt{4^2+3^2}=\sqrt{16+9}=\sqrt{25}=5[/tex]

[tex]A=\pi(5^2)=25\pi[/tex]