Respuesta :
[tex]\bf \textit{Amount for Exponential Decay using Half-Life} \\\\ A=P\left( \frac{1}{2} \right)^{\frac{t}{h}}\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{initial amount}\dotfill &100\\ t=\textit{elapsed time}\dotfill &20\\ h=\textit{half-life}\dotfill &20 \end{cases} \\\\\\ A=100\left( \frac{1}{2} \right)^{\frac{20}{20}}\implies A=100\left( \frac{1}{2} \right)^1\implies A=50[/tex]
50 grams of that sample will be left after 20 years since it’s only gone through one half-life exactly.