Model each problem as an equation, and then match to its solution.
![Model each problem as an equation and then match to its solution class=](https://us-static.z-dn.net/files/d91/4859a3654c8da17711bd828899014f51.png)
Answer:
Part 1) The larger integer is 11
Part 2) The denominator is 5
Part 3) The positive integer is 4
The graph in the attached figure
Step-by-step explanation:
Part 1)
Let
x----> the smaller positive integer
y-----> the larger positive integer
we know that
[tex]x^{2} +y^{2} =185[/tex] -----> equation A
[tex]x=y-3[/tex] -----> equation B
substitute equation B in equation A and solve for y
[tex](y-3)^{2} +y^{2} =185\\ \\y^{2} -6y+9+y^{2}=185\\ \\2y^{2}-6y-176=0[/tex]
using a graphing calculator-----> solve the quadratic equation
The solution is y=11
[tex]x=11-3=8[/tex]
Part 2)
Let
x----> the numerator of the fraction
y-----> the denominator of the fraction
we know that
[tex]x=2y+1[/tex] ----> equation A
[tex]\frac{x+4}{y+4}=\frac{5}{3}[/tex] ----> equation B
substitute equation A in equation B and solve for y
[tex]\frac{2y+1+4}{y+4}=\frac{5}{3}[/tex]
[tex]\frac{2y+5}{y+4}=\frac{5}{3}\\ \\6y+15=5y+20\\ \\6y-5y=20-15\\ \\y=5[/tex]
[tex]x=2(5)+1=11[/tex]
Part 3)
Let
x----> the positive integer
we know that
[tex]x-\frac{1}{x}=\frac{15}{4}[/tex]
solve for x
[tex]x-\frac{1}{x}=\frac{15}{4}\\ \\4x^{2}-4=15x\\ \\4x^{2}-15x-4=0[/tex]
using a graphing calculator-----> solve the quadratic equation
The solution is x=4