Respuesta :

Answer:

The correct answer option is -7.

Step-by-step explanation:

We are asked to determine the minimum value of y on the graph of [tex]y = sin x - 6 [/tex].

[tex]y' = cos(x) = 0[/tex]

[tex]x = arccos(0) = \pm\frac{\pi }{2} +2k\pi[/tex] where 'k' is any integer.

So, [tex] y = sin ( \frac { \pi} { 2 } ) - 6 = 1 - 6 = -5 [/tex] (it is the absolute minimum value)

and [tex]y=sin(\frac{-\pi}{2}+2\pi )-6 = sin(\frac{3\pi}{2})-6 [/tex] = -7 (absolute minimum y value)

Answer:

The correct answer option is -7.

We are asked to determine the minimum value of y on the graph of . where 'k' is any integer.

So,  (it is the absolute minimum value)and  = -7 (absolute minimum y value)