Answer:
1.2 cm
Step-by-step explanation:
Quadrilateral circumscribing a circle is a quadrangle whose sides are tangent to a circle inside it (see attached diagram).
The area of circumscribed quadrilateral is
[tex]A=p\cdot r,[/tex]
where [tex]p=\dfrac{a+b+c+d}{2}[/tex] is semi-perimeter and r is radius of inscribed circle.
In your case, [tex]A=12\ cm^2[/tex]
If a quadrilateral is circumscribed over the circle, then the sum of opposite sides is equal, so
[tex]a+c=b+d=10\ cm,[/tex]
so
[tex]P=10+10=20\ cm\\ \\p=\dfrac{20}{2}=10\ cm[/tex]
Now
[tex]12=10\cdot r\Rightarrow r=\dfrac{12}{10}=1.2\ cm[/tex]