Respuesta :
Answer:
The approximate lateral area of the prism is [tex]831\ in^{2[/tex]
Step-by-step explanation:
we know that
The lateral area of the prism is equal to
[tex]LA=PH[/tex]
where
P is the perimeter of the base of the prism
H is the height of the prism
Find the perimeter of the hexagonal base
Remember that the area of the hexagonal base is equal to
[tex]A=\frac{1}{2} P(a)[/tex]
where
P is the perimeter
a is the apothem
we have
[tex]A=346.41\ in^{2}[/tex]
[tex]a=10\ in[/tex]
substitute and solve for P
[tex]346.41=\frac{1}{2} P(10)[/tex]
[tex]P=346.41/5=69.282\ in[/tex]
Find the lateral area
[tex]LA=PH[/tex]
we have
[tex]P=69.282\ in[/tex]
[tex]H=12\ in[/tex]
substitute the values
[tex]LA=(69.282)(12)=831\ in^{2[/tex]