Respuesta :
ANSWER
[tex]{ {6}{x}^{3} {y}^{ \frac{16}{3} } }[/tex]
EXPLANATION
We want to find the cube root of
[tex]216 {x}^{9} {y}^{16} [/tex]
This is the same as:
[tex] \sqrt[3]{216 {x}^{9} {y}^{16} } [/tex]
We rewrite as radical exponent to get;
[tex] {(216 {x}^{9} {y}^{16} )}^{ \frac{1}{3} } [/tex]
This implies that;
[tex] {( {6}^{3} {x}^{9} {y}^{16} )}^{ \frac{1}{3} } [/tex]
This simplifies to:
[tex]{ {6}^{ \frac{3}{3} } {x}^{ \frac{9}{3} } {y}^{ \frac{16}{3} } }[/tex]
Hence the cube root is:
[tex]{ {6}{x}^{3} {y}^{ \frac{16}{3} } }[/tex]
Answer:
The cube root of [tex]\sqrt[3]{216x^9y^{16}} \,\,is\,\,6x^3y^{16/3}[/tex]
Step-by-step explanation:
We need to find the cube root of 216x^9y^16
[tex]\sqrt[3]{216x^9y^{16}} \\can\,\, be\,\, written\,\, as\,\,\\=\sqrt[3]{216} \sqrt[3]{x^9} \sqrt[3]{x^{16}} \\=\sqrt[3]{6x6x6} \sqrt[3]{x^9} \sqrt[3]{x^{16}} \\we\,\, know\,\,\sqrt[3]{x} = x^{1/3}\\= (6^3)^{1/3} (x^9)^{1/3}(y^{16})^{1/3}\\= 6x^3y^{16/3}[/tex]
So, the cube root of [tex]\sqrt[3]{216x^9y^{16}} \,\,is\,\,6x^3y^{16/3}[/tex]