Answer:
General equation of line : [tex]y = mx+c[/tex] --1
Where m is the slope or unit rate
Table 1)
p d
1 3
2 6
4 12
d = Number of dollars (i.e.y axis)
p = number of pound(i.e. x axis)
First find the slope
First calculate the slope of given points
[tex]m = \frac{y_2-y_1}{x_2-x_1}[/tex] ---A
[tex](x_1,y_1)=(1,3)[/tex]
[tex](x_2,y_2)=(2,6)[/tex]
Substitute values in A
[tex]m = \frac{6-3}{2-1}[/tex]
[tex]m = 3[/tex]
Thus the unit rate is 3 dollars per pound.
So, It matches the box 1 (Refer the attached figure)
Equation 1 : [tex]p=3d[/tex]
[tex]\frac{p}{3}=d[/tex]
Since p is the x coordinate and d is the y coordinate
On Comparing with 1
[tex]m = \frac{1}{3}[/tex]
Thus the unit rate is [tex]\frac{1}{3}[/tex] dollars per pound
So, It matches the box 2 (Refer the attached figure)
Equation 2 : [tex]\frac{1}{3}d=3p[/tex]
[tex]d=9p[/tex]
Since p is the x coordinate and d is the y coordinate
On Comparing with 1
[tex]m =9[/tex]
Thus the unit rate is 9 dollars per pound
So, It matches the box 3 (Refer the attached figure)
Table 2)
p d
1/9 1
1 9
2 18
d = Number of dollars (i.e.y axis)
p = number of pound(i.e. x axis)
[tex](x_1,y_1)=(\frac{1}{9},1)[/tex]
[tex](x_2,y_2)=(1,9)[/tex]
Substitute values in A
[tex]m = \frac{9-1}{1-\frac{1}{9}}[/tex]
[tex]m = \frac{8}{frac{8}{9}}[/tex]
[tex]m = 9[/tex]
Thus the unit rate is 9 dollars per pound
So, It matches the box 3 (Refer the attached figure)