Respuesta :

Answer:

General equation of line : [tex]y = mx+c[/tex]   --1

Where m is the slope or unit rate

Table 1)

p    d

1      3

2     6

4     12

d = Number of dollars (i.e.y axis)

p = number of pound(i.e. x axis)

First find the slope

First calculate the slope of given points

[tex]m = \frac{y_2-y_1}{x_2-x_1}[/tex]   ---A

[tex](x_1,y_1)=(1,3)[/tex]

[tex](x_2,y_2)=(2,6)[/tex]

Substitute values in A

[tex]m = \frac{6-3}{2-1}[/tex]

[tex]m = 3[/tex]

Thus the unit rate is 3 dollars per pound.

So, It matches the box 1 (Refer the attached figure)

Equation 1 : [tex]p=3d[/tex]

[tex]\frac{p}{3}=d[/tex]

Since p is the x coordinate and d is the y coordinate

On Comparing with 1

[tex]m = \frac{1}{3}[/tex]

Thus the unit rate is [tex]\frac{1}{3}[/tex] dollars per pound

So, It matches the box 2 (Refer the attached figure)

Equation 2 : [tex]\frac{1}{3}d=3p[/tex]

[tex]d=9p[/tex]

Since p is the x coordinate and d is the y coordinate

On Comparing with 1

[tex]m =9[/tex]

Thus the unit rate is 9 dollars per pound

So, It matches the box 3 (Refer the attached figure)

Table 2)

p        d

1/9      1

1         9

2        18

d = Number of dollars (i.e.y axis)

p = number of pound(i.e. x axis)

[tex](x_1,y_1)=(\frac{1}{9},1)[/tex]

[tex](x_2,y_2)=(1,9)[/tex]

Substitute values in A

[tex]m = \frac{9-1}{1-\frac{1}{9}}[/tex]

[tex]m = \frac{8}{frac{8}{9}}[/tex]

[tex]m = 9[/tex]

Thus the unit rate is 9 dollars per pound

So, It matches the box 3 (Refer the attached figure)

Ver imagen wifilethbridge

Answer: See image attached

Step-by-step explanation:

Ver imagen Jdkdkkekwkke
ACCESS MORE