Respuesta :
Answer: 1
Step-by-step explanation:
8 likes playing soccer
6 likes swimming
2 likes both
So in other words, because the 2 students likes swimming and playing soccer, they must be coming from the combined number of students (8+6=14) leaving only 1 who doesn't like to play either swimming/soccer.
There are 3 students who do not like either playing soccer or swimming and it can be determined by using set operation.
Given that,
In a class, there are 15 students. 8 of them like playing soccer, 6 of them like swimming, and 2 like both and swimming and playing soccer.
We have to determine,
How many students do not like either playing soccer or swimming?
According to the question,
Let x be the number of students who do not like either playing soccer or swimming.
Total number of students = n(U) = 15
Number of students who like playing soccer = n(A) = 8
Number of students who like swimming = n(B) = 6
Then,
The number of students like both = 2
Number of students who like swimming = Total number of students who like swimming - number of students like both
Number of students who like swimming = 6 -2 = 4
And Number of students who like playing soccer = Total number of students who like playing soccer - number of students like both
Number of students who like swimming = 8 -2 = 6
Therefore,
The total number of students = Number of students who like swimming + Number of students who like swimming + Number of students who do not like either playing soccer or swimming.
[tex]\rm 15 = (8-2) + (6-2) + x +2\\\\15 = 6+4+x+2\\\\15 = 12+x\\\\x = 15-12\\\\x=3[/tex]
Hence, there are 3 students who do not like either playing soccer or swimming.
To know more about Sets click the link given below.
https://brainly.com/question/8053622