Respuesta :

Answer:

The volume of the figure is [tex](\frac{l^{3}}{3})[\frac{\pi }{2}-1]\ units^{3}[/tex]

Step-by-step explanation:

we know that

The volume of the figure is equal to the volume of the cone minus the volume of the square pyramid

step 1

Find the volume of the cone

The volume of the cone is equal to

[tex]V=\frac{1}{3}\pi r^{2}h[/tex]

we have

[tex]r=\frac{l\sqrt{2}}{2}\ units[/tex] ----> the diagonal of the square base of pyramid is equal to the diameter of the cone

[tex]h=l\ units[/tex]

substitute

[tex]V=\frac{1}{3}\pi (\frac{l\sqrt{2}}{2})^{2}(l)[/tex]

[tex]V=\frac{1}{6}\pi (l)^{3}\ units^{3}[/tex]  

step 2

Find the volume of the square pyramid

The volume of the pyramid is equal to

[tex]V=\frac{1}{3}Bh[/tex]

where

B is the area of the base

h is the height of the pyramid

we have

[tex]h=l\ units[/tex]

[tex]B=l^{2}\ units^{2}[/tex]

substitute

[tex]V=\frac{1}{3}l^{2}(l)[/tex]

[tex]V=\frac{1}{3}l^{3}\ units^{3}[/tex]

step 3

Find the volume of the figure

[tex]\frac{1}{6}\pi (l)^{3}\ units^{3}-\frac{1}{3}l^{3}\ units^{3}=(\frac{l^{3}}{3})[\frac{\pi }{2}-1]\ units^{3}[/tex]