Respuesta :
Answer:
He should have written the square root of [tex]y^8[/tex] in the answer as [tex]y^4[/tex], not [tex]y^2[/tex]
Step-by-step explanation:
We need to remember that:
[tex]\sqrt[n]{x^n}=x[/tex]
The Product of powers property states that:
[tex](a^m)(a^n)=a^{(m+n)}[/tex]
The Power of a power a property states that:
[tex](a^m)^n=a^{(mn)}[/tex]
Let's check the procedure made by Jamal to simplify the expression [tex]\sqrt{75x^5y^8 }[/tex] where [tex]x\geq0[/tex] and [tex]y\geq0[/tex]:
[tex]=\sqrt{25*3*x^4*x*y^8}[/tex] (This is correct)
[tex]5x^2y^2\sqrt{3x}[/tex] (Jamal made a mistake)
The correct procedure is:
[tex]=\sqrt{25*3*x^4*x*y^8}[/tex]
[tex]=5x^2y^4\sqrt{3x}[/tex]
Because:
[tex]\sqrt{y^8}=\sqrt{(y^4)^2}=y^4[/tex]
Therefore: He should have written the square root of [tex]y^8[/tex] in the answer as [tex]y^4[/tex], not [tex]y^2[/tex],
Answer:
He should have written the square root of y Superscript 8 in the answer as y Superscript 4, not y squared.
Step-by-step explanation:
its A on Ed