Answer:
Molarity of the sulfuric acid is Choice C): 0.200 M.
Explanation:
The unit for molarity "M" stands for moles per liter. Convert all volume to liters:
How many moles of potassium hydroxide is required to reach the equivalence endpoint?
[tex]n({\rm NaOH}) = c \cdot V = 0.200\;\text{mol}\cdot\text{L}^{-1} \times 5.00times 10^{-2} \;\text{L} = 1.00\times 10^{-2}\;\text{mol}[/tex].
How many moles of sulfuric acid in the original solution?
[tex]\rm KOH[/tex] neutralizes [tex]\rm H_2SO_4[/tex] at a two-to-one ratio:
[tex]\rm 2\;KOH\;(aq) +H_2SO_4\;(aq) \to K_2SO_4\;(aq) + H_2O\;(l)[/tex].
The [tex]1.00\times 10^{-2}\;\text{mol}[/tex] moles of [tex]\rm KOH[/tex] will neutralize only half as much [tex]\rm H_2SO_4[/tex]. That is:
[tex]\displaystyle n({\rm H_2SO_4}) = \rm \frac{1}{2}\times (1.00\times 10^{-2}\;mol)= 5.00\times 10^{-3}\;mol[/tex].
What's the molarity of the [tex]\rm H_2SO_4[/tex] solution?
[tex]\displaystyle \begin{aligned}M({\rm H_2SO_4}) &= \frac{n(\rm H_2SO_4)}{V({\rm H_2SO_4})}=\rm \frac{5.00\times 10^{-3}\;mol}{2.50\times 10^{-2}\;L} = 0.200\;mol\cdot\L^{-1} = 0.200\;M\end{aligned}[/tex].