According to the general equation for conditional probability, if (image attached)

A. [tex]\frac{40}{49}[/tex]
B. [tex]\frac{24}{49}[/tex]
C. [tex]\frac{32}{49}[/tex]
D. [tex]\frac{16}{49}[/tex]

According to the general equation for conditional probability if image attached A texfrac4049tex B texfrac2449tex C texfrac3249tex D texfrac1649tex class=

Respuesta :

Answer: Option A

[tex]P(A|B) = \frac{40}{49}[/tex]

Step-by-step explanation:

In a probabilistic experiment, when two events A and B are dependent on each other, then the probability of occurrence A since B occurs is:

[tex]P(A|B) = \frac{P(A\ and\ B)}{P(B)}[/tex]

Then if [tex]P(A\ and\ B) = \frac{5}{7}[/tex] and [tex]P(B) = \frac{7}{8}[/tex] then:

[tex]P(A|B) = \frac{\frac{5}{7}}{\frac{7}{8}}\\\\P(A|B) = \frac{40}{49}[/tex]

Answer:

Correct choice is A. [tex]P(A|B)=\frac{40}{49}[/tex].

Step-by-step explanation:

Given that [tex]P(A\cap B)=\frac{5}{7}[/tex], [tex]P(B)=\frac{7}{8}[/tex].

Now using those values , we need to find the value of [tex]P(A|B)[/tex].

So apply the formula of conditional probability:

[tex]P(A\cap B)=P(B) \times P(A|B)[/tex]

Plug the given values into above formula,  we get:

[tex]\frac{5}{7}=\frac{7}{8} \times P(A|B)[/tex]

[tex]\frac{7}{8} \times P(A|B)=\frac{5}{7}[/tex]

[tex]P(A|B)=\frac{\frac{5}{7}}{\frac{7}{8}}[/tex]

[tex]P(A|B)=\frac{5}{7}\cdot\frac{8}{7}[/tex]

[tex]P(A|B)=\frac{40}{49}[/tex]

Hence correct choice is A. [tex]P(A|B)=\frac{40}{49}[/tex].

ACCESS MORE