The answer is:
The equation of the line in slope-intercept form:
[tex]y=\frac{5}{6}x+\frac{7}{3}[/tex]
To find the equation in slope-intercept form, we need to follow the next steps:
Find the slope of the line:
Using the slope formula, we have:
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
We are given the points:
[tex](2,4)\\(-4,-1)[/tex]
So, substituting we have:
[tex]m=\frac{(-1)-(4)}{-4-2}[/tex]
[tex]m=\frac{-5}{-6}[/tex]
[tex]m=\frac{5}{6}[/tex]
Find the "b" value:
Now that we know the value of the slope, we can write the equation of the line:
[tex]y=\frac{5}{6}x+b[/tex]
In order to find "b" we need to substituite any of the given points, we know that line is thru both of the given points, so, substituting (2,4) we have:
[tex]4=\frac{5}{6}*2+b\\\\4=\frac{10}{6}+b\\\\4=\frac{5}{3}+b\\\\b=4-\frac{5}{3}=\frac{(3*4)-5}3}=\frac{12-5}{3}=\frac{7}{3}[/tex]
Now that we know the slope and "b", we can write the equation of the line in slope-intercept form:
[tex]y=\frac{5}{6}x+\frac{7}{3}[/tex]
Have a nice day!