Determine whether the triangles are similar, if so what is a similarity statement in the postulate or theorem used?
![Determine whether the triangles are similar if so what is a similarity statement in the postulate or theorem used class=](https://us-static.z-dn.net/files/de2/d9fef97884df22559973ef80fe383f3b.jpeg)
Answer:
It is the secon option ∆TRS ≈ ∆TPQ ; SAS
Step-by-step explanation: angle t is equal to angle t because it is the same angle
line TR divided by line TP is equal to line TS divided by TQ
Answer: The correct option is
[tex](B)~\triangle TRS\sim \triangle TPQ,~SAS\sim.[/tex]
Step-by-step explanation: We are given to check whether the triangles in the figure are similar or not. If so, we are to state the similarity statement.
From the figure, we note that
in the triangles TPQ and TRS, we have
[tex]TP=42,~TQ=28,TR=42+6=48,~~TS=28+4=32.[/tex]
Therefore, the ratios of the corresponding sides of two triangles are
[tex]\dfrac{TP}{TR}=\dfrac{42}{48}=\dfrac{7}{8},\\\\\\\dfrac{TQ}{TS}=\dfrac{28}{32}=\dfrac{7}{8}.[/tex]
Now, in ΔTPQ and ΔTRS, we have
[tex]\dfrac{TP}{TR}=\dfrac{TQ}{TS},\\\\\\m\angle TPQ=m\angle TRS~~~\textup{[common angle]}[/tex]
So, triangles TPQ and TRS are similar by SAS proportionality postulate.
Thus, the correct option is
[tex](B)~\triangle TRS\sim \triangle TPQ,~SAS\sim.[/tex]