30 points PLEASE HELP WITH MATH PROBLEM
![30 points PLEASE HELP WITH MATH PROBLEM class=](https://us-static.z-dn.net/files/d51/84b56854429c1168af71242d951b5494.png)
From this triangle we know:
THE AREA:
[tex]A=80cm^2[/tex]
THE HEIGHT:
[tex]H=B+12[/tex]
We know that the area, height, and base of a triangle are related according to the following formula:
[tex]A=\frac{BH}{2} \\ \\ Substituting \ H: \\ \\ A=\frac{B(B+12)}{2} \\ \\ Substituting \ A: \\ \\ 80=\frac{B(B+12)}{2} \\ \\ 2(80)=B(B+12) \\ \\ 160=B^2+12B \\ \\ B^2+12B-160=0[/tex]
Solving B by quadratic formula:
[tex]B_{12}=\frac{-b \pm \sqrt{b^2-4ac}}{2a} \\ \\ B_{12}=\frac{-12 \pm \sqrt{12^2-4(1)(-160)}}{2(1)} \\ \\ B_{12}=\frac{-12 \pm \sqrt{12^2-4(1)(-160)}}{2(1)} \\ \\ B_{1}=8 \ and \ B_{2}=-20[/tex]
Since we can’t have a negative value of the base, the correct option is:
[tex]B=8cm[/tex]
We must use the formula:
[tex]h(t)=-5.2t^2+v_{0}t+h_{0}[/tex]
Since James drops the balloon from a height of 45m, then this is the initial height, so [tex]h_{0}=45m[/tex]. Moreover, at the very instant he drops the balloon the initial velocity is zero, so [tex]v_{0}=0[/tex]. When the ballon hit the ground [tex]h(t)=0[/tex]. Therefore:
[tex]0=-5.2t^2+45[/tex]
Solving this equation:
[tex]5.2t^2=45 \\ \\ t^2=\frac{45}{5.2} \\ \\ t^2=8.653 \\ \\ t=\sqrt{8.653} \\ \\ t=2.941s[/tex]
Rounding to the nearest tenth:
[tex]\boxed{t=2.9s}[/tex]
Finally, the water balloon will hit the ground after 2.9 seconds.
We have the equation:
[tex]h(t)=-16t^2+32t+12[/tex]
But we know that this equation follows the form:
[tex]h(t)=-16t^2+v_{0}t+h_{0}[/tex]
According to this:
The height of the platform is [tex]h_{0}=12ft[/tex]
The initial velocity of the ball is [tex]v_{0}=32ft/s[/tex]