Find the Maclaurin series for f(x) using the definition of a Maclaurin series. [Assume that f has a power series expansion. Do not show that Rn(x) → 0.] Find the associated radius of convergence R. f(x) = 6(1 − x)−2

Respuesta :

I guess the function is

[tex]f(x)=\dfrac6{(1-x)^2}[/tex]

Rather than computing derivatives of [tex]f[/tex], recall that for [tex]|x|<1[/tex], we have

[tex]g(x)=\dfrac1{1-x}=\displaystyle\sum_{n=0}^\infty x^n[/tex]

Notice that

[tex]g'(x)=\dfrac1{(1-x)^2}[/tex]

so that [tex]f(x)=6g'(x)[/tex]. Then

[tex]f(x)=6\displaystyle\sum_{n=0}^\infty nx^{n-1}=6\sum_{n=1}^\infty nx^{n-1}=6\sum_{n=0}^\infty(n+1)x^n[/tex]

also valid only for [tex]|x|<1[/tex], so that the radius of convergence is 1.

ACCESS MORE