Let me know the answer plz
![Let me know the answer plz class=](https://us-static.z-dn.net/files/d84/14a8a5d02418f4940184bb73de54f986.png)
Answer:
J
Step-by-step explanation:
Find the common ratio r of the geometric sequence then multiply a term by r to obtain the next term
r = [tex]\frac{a_{2} }{a_{1} }[/tex] = [tex]\frac{6}{-36}[/tex] = - [tex]\frac{1}{6}[/tex]
The next 3 terms are
[tex]\frac{1}{6}[/tex] × - [tex]\frac{1}{6}[/tex] = - [tex]\frac{1}{36}[/tex]
- [tex]\frac{1}{36}[/tex] × - [tex]\frac{1}{6}[/tex] = [tex]\frac{1}{216}[/tex]
[tex]\frac{1}{216}[/tex] × - [tex]\frac{1}{6}[/tex] = - [tex]\frac{1}{1296}[/tex]
Answer:
J. [tex]-\frac{1}{36}[/tex], [tex]\frac{1}{216}[/tex], [tex]-\frac{1}{1296}[/tex]
Step-by-step explanation:
We are given the following geometric sequence and we are to find its 8th term:
[tex]-36, 6, -1, \frac{1}{6},...[/tex]
Here [tex]a_1=-36[/tex] and common ratio [tex](r) = \frac{-1}{6}=\frac{-1}{6}[/tex].
The formula we will use to find the next three terms is:
nth term = [tex]a_1 \times r^{(n-1)}[/tex]
5th term = [tex]-36 \times \frac{-1}{6}^{(5-1)}[/tex] = [tex]-\frac{1}{36}[/tex]
6th term = [tex]-36 \times \frac{-1}{6}^{(6-1)}[/tex] = [tex]\frac{1}{216}[/tex]
7th term = [tex]-36 \times \frac{-1}{6}^{(7-1)}[/tex] = [tex]-\frac{1}{1296}[/tex]