Use the divergence theorem to find the outward flux of the vector field F(xyz)= 4x^2 i + 4y^2 j + 3z^2 k across the boundary of the rectangular prism: 0

Respuesta :

[tex]\vec F(x,y,z)=4x^2\,\vec\imath+4y^2\,\vec\jmath+3z^2\,\vec k\implies\nabla\cdot\vec F=8x+8y+6z[/tex]

Let [tex]S[/tex] be the surface of the rectangular prism bounded by the planes [tex]x=0[/tex], [tex]x=a[/tex], [tex]y=0[/tex], [tex]y=b[/tex], [tex]z=0[/tex], and [tex]z=c[/tex]. By the divergence theorem, the integral of [tex]\vec F[/tex] over [tex]S[/tex] is given by the integral of [tex]\nabla\cdot\vec F[/tex] over the interior of [tex]S[/tex] (call it [tex]R[/tex]):

[tex]\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=\iiint_R(\nabla\cdot\vec F)\,\mathrm dV[/tex]

[tex]=\displaystyle\int_0^c\int_0^b\int_0^a(8x+8y+6z)\,\mathrm dx\,\mathrm dy\,\mathrm dz=\boxed{abc(4a+4b+3c)}[/tex]

Space

Answer:

[tex]\displaystyle \iiint_D {\nabla \cdot \textbf{F}} \, dV = \boxed{6875}[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
[tex]\displaystyle (cu)' = cu'[/tex]

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:
[tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:
[tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Multivariable Calculus

Partial Derivatives

Vector Calculus (Line Integrals)

Del (Operator):
[tex]\displaystyle \nabla = \hat{\i} \frac{\partial}{\partial x} + \hat{\j} \frac{\partial}{\partial y} + \hat{\text{k}} \frac{\partial}{\partial z}[/tex]

Div and Curl:

  • [tex]\displaystyle \text{div \bf{F}} = \nabla \cdot \textbf{F}[/tex]
  • [tex]\displaystyle \text{curl \bf{F}} = \nabla \times \textbf{F}[/tex]

Divergence Theorem:
[tex]\displaystyle \iint_S {\big( \nabla \times \textbf{F} \big) \cdot \textbf{n}} \, d\sigma = \iiint_D {\nabla \cdot \textbf{F}} \, dV[/tex]

Step-by-step explanation:

*Note:
Your question is incomplete, but I have defined the missing portions of the question below.

Step 1: Define

Identify given.

[tex]\displaystyle \textbf{F} (x, y, z) = 4x^2 \hat{\i} + 4y^2 \hat{\j} + 3z^2 \hat{\text{k}}[/tex]

[tex]\displaystyle \text{Region (Boundary de} \text{fined by rectangular prism):} \left\{ \begin{array}{ccc} 0 \leq x \leq 5 \\ 0 \leq y \leq 5 \\ 0 \leq z \leq 5 \end{array}[/tex]

Step 2: Find Flux Pt. 1

  1. [Vector Field] Find div F:
    [tex]\displaystyle \text{div } \textbf{F} = \frac{\partial}{\partial x}4x^2 + \frac{\partial}{\partial y}4y^2 + \frac{\partial}{\partial z}3z^2[/tex]
  2. [div F] Differentiate [Partial Derivatives and Basic Differentiation Techniques]:
    [tex]\displaystyle \text{div } \textbf{F} = 8x + 8y + 6z[/tex]

Step 3: Find Flux Pt. 2

  1. [Flux] Define:
    [tex]\displaystyle \Phi = \iiint_D {\nabla \cdot \textbf{F}} \, dV[/tex]
  2. [Divergence Theorem] Substitute in div F:
    [tex]\displaystyle \Phi = \iiint_D {\big( 8x + 8y + 6z \big)} \, dx \, dy \, dz[/tex]
  3. [Flux] Substitute in region D:
    [tex]\displaystyle \Phi = \int\limits^5_0 \int\limits^5_0 \int\limits^5_0 {\big( 8x + 8y + 6z \big)} \, dx \, dy \, dz[/tex]

We can evaluate the Flux integral (Divergence Theorem integral) using basic integration techniques listed under "Calculus":

[tex]\displaystyle \begin{aligned}\int\limits^5_0 \int\limits^5_0 \int\limits^5_0 {\big( 8x + 8y + 6z \big)} \, dx \, dy \, dz & = \int\limits^5_0 \int\limits^5_0 {4x^2 + x \big( 8y + 6z \big) \bigg| \limits^{x = 5}_{x = 0}} \, dy \, dz \\& = \int\limits^5_0 \int\limits^5_0 {\big( 40y + 30z + 100 \big)} \, dy \, dz \\& = \int\limits^5_0 {20y^2 + y \big( 30z + 100 \big) \bigg| \limits^{y = 5}_{y = 0}} \, dz \\\end{aligned}[/tex]

[tex]\displaystyle\begin{aligned}\int\limits^5_0 \int\limits^5_0 \int\limits^5_0 {\big( 8x + 8y + 6z \big)} \, dx \, dy \, dz & = \int\limits^5_0 {\big( 150z + 1000 \big)} \, dz \\& = \big( 75z^2 + 1000z \big) \bigg| \limits^{z = 5}_{z = 0} \\& = \boxed{6875} \\\end{aligned}[/tex]

∴  [tex]\displaystyle \Phi = \boxed{6875}[/tex]

---

Learn more about Divergence Theorem: https://brainly.com/question/2407209

Learn more about multivariable calculus: https://brainly.com/question/7964566

---

Topic: Multivariable Calculus

Unit: Stokes' Theorem and Divergence Theorem

ACCESS MORE