Evaluate the surface integraliintegral.gifSF � dSfor the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation.F(x, y, z) = xy i + yz j + zx kS is the part of the paraboloidz = 2 ? x2 ? y2 that lies above the square 0 ? x ? 1, 0 ? y ? 1,and has upward orientation

Respuesta :

Looks like the paraboloid has equation

[tex]z=2-x^2-y^2[/tex]

and [tex]S[/tex] is the part of this surface with [tex]0\le x\le1[/tex] and [tex]0\le y\le1[/tex]. Parameterize [tex]S[/tex] by

[tex]\vec s(u,v)=u\,\vec\imath+v\,\vec\jmath+(2-u^2-v^2)\,\vec k[/tex]

with [tex]0\le u\le1[/tex] and [tex]0\le v\le1[/tex]. Take the normal vector to [tex]S[/tex] to be

[tex]\vec s_u\times\vec s_v=2u\,\vec\imath+2v\,\vec\jmath+\vec k[/tex]

Then the flux of [tex]\vec F[/tex] across [tex]S[/tex] is

[tex]\displaystyle\iint_S\vec F\cdot\mathrm d\vec S[/tex]

[tex]\displaystyle=\int_0^1\int_0^1(uv\,\vec\imath+v(2-u^2-v^2)\,\vec\jmath+u(2-u^2-v^2)\,\vec k)\cdot(2u\,\vec\imath+2v\,\vec\jmath+\vec k)\,\mathrm du\,\mathrm dv[/tex]

[tex]\displaystyle=\int_0^1\int_0^1(2u^2v+(2v+1)u(2-u^2-v^2))\,\mathrm du\,\mathrm dv=\boxed{\frac{293}{180}}[/tex]

ACCESS MORE