Looks like the paraboloid has equation
[tex]z=2-x^2-y^2[/tex]
and [tex]S[/tex] is the part of this surface with [tex]0\le x\le1[/tex] and [tex]0\le y\le1[/tex]. Parameterize [tex]S[/tex] by
[tex]\vec s(u,v)=u\,\vec\imath+v\,\vec\jmath+(2-u^2-v^2)\,\vec k[/tex]
with [tex]0\le u\le1[/tex] and [tex]0\le v\le1[/tex]. Take the normal vector to [tex]S[/tex] to be
[tex]\vec s_u\times\vec s_v=2u\,\vec\imath+2v\,\vec\jmath+\vec k[/tex]
Then the flux of [tex]\vec F[/tex] across [tex]S[/tex] is
[tex]\displaystyle\iint_S\vec F\cdot\mathrm d\vec S[/tex]
[tex]\displaystyle=\int_0^1\int_0^1(uv\,\vec\imath+v(2-u^2-v^2)\,\vec\jmath+u(2-u^2-v^2)\,\vec k)\cdot(2u\,\vec\imath+2v\,\vec\jmath+\vec k)\,\mathrm du\,\mathrm dv[/tex]
[tex]\displaystyle=\int_0^1\int_0^1(2u^2v+(2v+1)u(2-u^2-v^2))\,\mathrm du\,\mathrm dv=\boxed{\frac{293}{180}}[/tex]