Line integral: Parameterize [tex]C[/tex] by
[tex]\vec r(t)=\langle\sqrt{13}\cos t,\sqrt{13}\sin t,0\rangle[/tex]
with [tex]0\le t\le2\pi[/tex]. Then
[tex]\displaystyle\int_C\vec F\cdot\mathrm d\vec r=\int_0^{2\pi}\langle\sqrt{13}\cos t,\sqrt{13}\sin t,0\rangle\cdot\langle-\sqrt{13}\sin t,\sqrt{13}\cos t,0\rangle\,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^{2\pi}0\,\mathrm dt=\boxed 0[/tex]
Surface integral: By Stokes' theorem, the line integral of [tex]\vec F[/tex] over [tex]C[/tex] is equivalent to the surface integral of the curl of [tex]\vec F[/tex] over [tex]S[/tex]:
[tex]\displaystyle\int_C\vec F\cdot\mathrm d\vec r=\iint_S(\nabla\times\vec F)\cdot\mathrm d\vec S[/tex]
The curl of [tex]\langle x,y,z\rangle[/tex] is 0, so the value of the surface integral is 0, as expected.