Answer:
[tex]\large\boxed{A(r(C))=\dfrac{C^2}{4\pi}}[/tex]
Step-by-step explanation:
[tex]A(r)=\pi r^2\\\\r(C)=\dfrac{C}{2\pi}\\\\A(r(C))\to\text{put}\ r=\dfrac{C}{2\pi}\ \text{to}\ A(r):\\\\A(r(C))=\pi\left(\dfrac{C}{2\pi}\right)^2\qquad\text{use}\ \left(\dfrac{a}{b}\right)^n=\dfrac{a^n}{b^n}\ \text{and}\ (ab)^n=a^nb^n\\\\A(r(C))=\pi\cdot\dfrac{C^2}{2^2\pi^2}\qquad\text{cancel one}\ \pi\\\\A(r(C))=\dfrac{C^2}{4\pi}[/tex]