Respuesta :

[tex]\ln x[/tex] has a domain of [tex]x>0[/tex], so [tex]\ln\left(12-\dfrac{4x}5\right)[/tex] has a domain of

[tex]12-\dfrac{4x}5>0\implies12>\dfrac{4x}5\implies x<15[/tex]

Answer:

The domain of the function is  [tex]x<3[/tex]                                

Step-by-step explanation:

Given : Function [tex]y=\ln (\frac{12-4x}{5})[/tex]

To find : What is the domain of the function ?

Solution :

Domain is defined as the set of possible values which define the function.

We know that, log negative is not defined.

So, we will get the inequality  in the function.

[tex]\ln (\frac{12-4x}{5})>0[/tex]

[tex]\frac{12-4x}{5}>0[/tex]

[tex]12-4x>0[/tex]

[tex]-4x>-12[/tex]

[tex]x<3[/tex]

Therefore, The domain of the function is  [tex]x<3[/tex]