Respuesta :
[tex]\ln x[/tex] has a domain of [tex]x>0[/tex], so [tex]\ln\left(12-\dfrac{4x}5\right)[/tex] has a domain of
[tex]12-\dfrac{4x}5>0\implies12>\dfrac{4x}5\implies x<15[/tex]
Answer:
The domain of the function is [tex]x<3[/tex]
Step-by-step explanation:
Given : Function [tex]y=\ln (\frac{12-4x}{5})[/tex]
To find : What is the domain of the function ?
Solution :
Domain is defined as the set of possible values which define the function.
We know that, log negative is not defined.
So, we will get the inequality in the function.
[tex]\ln (\frac{12-4x}{5})>0[/tex]
[tex]\frac{12-4x}{5}>0[/tex]
[tex]12-4x>0[/tex]
[tex]-4x>-12[/tex]
[tex]x<3[/tex]
Therefore, The domain of the function is [tex]x<3[/tex]