Respuesta :
Answer:
1. [tex]\boxed{y=x^2+16\to138sq.\:units}[/tex]
2. [tex]\boxed{y=-x^2+7x\to42sq. \:units}[/tex]
3. [tex]\boxed{y=4x+26\to 204sq.\:units}[/tex]
4.[tex]\boxed{y=-0.5x+13\to72sq.\:units}[/tex]
Step-by-step explanation:
1. The first curve is [tex]y=x^2+16[/tex]
The area under this curve on the interval [-1, 5] is given by:
[tex]\int\limits^5_{-1} {x^2+16} \, dx[/tex]
We integrate to obtain:
[tex]\frac{1}{3}x^3+16x|_{-1}^5[/tex]
We evaluate to obtain:
[tex]\frac{1}{3}(5)^3+16(5)-(\frac{1}{3}(-1)^3+16(-1))=138sq.\:units[/tex]
[tex]\boxed{y=x^2+16\to138sq.\:units}[/tex]
2. The second curve is [tex]y=-x^2+7x[/tex].
The area under this curve on the interval [-1, 5] is given by:
[tex]\int\limits^5_{-1} {-x^2+7x} \, dx[/tex]
We integrate this function to obtain:
[tex]-\frac{1}{3}x^3+\frac{7}{2}x^2|_{-1}^5[/tex]
This evaluates to
[tex]-\frac{1}{3}(5)^3+\frac{7}{2}(5)^2-(-\frac{1}{3}(-1)^3+\frac{7}{2}(-1)^2)=42[/tex] square units.
[tex]\boxed{y=-x^2+7x\to42sq. \:units}[/tex]
3. The third curve is [tex]y=4x+26[/tex]
The area under this curve on the interval [-1, 5] is given by:
[tex]\int\limits^5_{-1} {4x+26} \, dx[/tex]
We integrate this function to obtain:
[tex]2x^2+26x|_{-1}^5[/tex]
We evaluate the limits of integration to obtain:
[tex]2(5)^2+26(5)-(2(5)^2+26(5))=204sq.\:units[/tex]
[tex]\boxed{y=4x+26\to 204sq.\:units}[/tex]
4. The fourth curve is [tex]y=-0.5x+13[/tex]
The area under this curve on the interval [-1, 5] is given by:
[tex]\int\limits^5_{-1} {-0,5x+13} \, dx[/tex]
We integrate this function to obtain:
[tex]-0.25x^2+13x|_{-1}^5[/tex]
We evaluate the limits of integration to obtain:
[tex]-0.25(5)^2+13(5)-(-0.25(-15)^2+13(-1))=72sq.\:units[/tex]
[tex]\boxed{y=-0.5x+13\to72sq.\:units}[/tex]
Answer: The above answer is correct
Step-by-step explanation: I got this right on Edmentum
![Ver imagen elpink25](https://us-static.z-dn.net/files/d7d/1c07b6cb02645d2f1e70138c9f05b3d1.jpg)