Cooleos
contestada

A 25-foot ladder leans against a wall. The base of the ladder is 15 feet from the bottom of the wall. How far up the wall does the top of the ladder reach?

Respuesta :

Answer: 20 feet.

Step-by-step explanation:

Observe the right triangle attached.

You need to find the value of "x".

Then, you can use the Pythagorean Theorem:

[tex]a^2=b^2+c^2[/tex]

Where "a" is the hypotenuse of the triangle, and "b" and "c" are the legs.

 In this case, you can identify that:

[tex]a=25ft\\b=15ft\\c=x[/tex]

Substitute these values into  [tex]a^2=b^2+c^2[/tex]:

 [tex](25ft)^2=(15ft)^2+x^2[/tex]

Now, you need to solve for x to find how far up the wall the top of the ladder reaches. Then you get:

[tex]x^2=(25ft)^2-(15ft)^2[/tex]

[tex]x=\sqrt{(25ft)^2-(15ft)^2}[/tex]

[tex]x=20ft[/tex]

Ver imagen luisejr77

ANSWER

20ft

EXPLANATION

The ladder, the wall and the ground formed a right triangle.

Let how far up the wall does the top of the ladder reached be x units.

The 25ft ladder is the hypotenuse.

The shorter legs are, 15ft and x ft

Then from Pythagoras Theorem,

[tex] {x}^{2} + {15}^{2} = {25}^{2} [/tex]

[tex] {x}^{2} + 225 = 625[/tex]

[tex] {x}^{2}= 625 - 225[/tex]

[tex]{x}^{2}= 400[/tex]

[tex]x = \sqrt{400} [/tex]

[tex]x = 20ft[/tex]

Therefore the ladder is 20 ft up the wall.

Ver imagen kudzordzifrancis