Respuesta :

Answer:

The area of the sector is [tex]37.68\ in^{2}[/tex]

Step-by-step explanation:

step 1

Find the area of the circle

The area of the circle is equal to

[tex]A=\pi r^{2}[/tex]

we have

[tex]r=12/2=6\ in[/tex] ----> the radius is half the diameter

substitute

[tex]A=(3.14)(6)^{2}[/tex]

[tex]A=113.04\ in^{2}[/tex]

step 2

Find the area of a sector with a central angle of (2pi/3)

Remember that

The area of [tex]113.04\ in^{2}[/tex] subtends a central angle of [tex]2\pi \ radians[/tex]

so

by proportion

Let

x----> the area of the sector

[tex]\frac{2\pi}{113.04}=\frac{(2\pi/3)}{x}\\ \\x=113.04*(2\pi/3)/(2\pi)\\ \\x=37.68\ in^{2}[/tex]