Answer:
[tex]0.46\pi\ radians[/tex]
Step-by-step explanation:
step 1
Find the circumference
The circumference of a circle is equal to
[tex]C=2\pi r[/tex]
we have
[tex]r=5\ units[/tex]
assume
[tex]\pi=3.14[/tex]
substitute
[tex]C=2(3.14)(5)=31.4\ units[/tex]
step 2
Find the measure in radians for the central angle of a circle whose radius is 5 and intercepted arc length is 7.2 units
Remember that
The circumference of [tex]31.4\ units[/tex] subtends a central angle of [tex]2\pi \ radians[/tex]
so
using proportion
Let
x-----> the central angle in radians
[tex]\frac{2\pi}{31.4}=\frac{x}{7.2} \\ \\x=2\pi (7.2)/31.4\\ \\x=0.46\pi\ radians[/tex]