Respuesta :

Answer:

(a) [tex]x ^ 2 + y ^ 2 = 6 ^ 2[/tex]    circle centered on the point (0,0) and with a constant radius [tex]r = 6[/tex].

(b) [tex](x-1) ^ 2 + y ^ 2 = 1[/tex]  circle centered on the point (1, 0) and with radio [tex]r=1[/tex]

Step-by-step explanation:

Remember that to convert from polar to rectangular coordinates you must use the relationship:

[tex]x = rcos(\theta)[/tex]

[tex]y = rsin(\theta)[/tex]

[tex]x ^ 2 + y ^ 2 = r ^ 2[/tex]

In this case we have the following equations in polar coordinates.

(a) [tex]r = 6[/tex].

Note that in this equation the radius is constant, it does not  depend on [tex]\theta[/tex].

As

[tex]r ^ 2 = x ^ 2 + y ^ 2[/tex]

Then we replace the value of the radius in the equation and we have to::

[tex]x ^ 2 + y ^ 2 = 6 ^ 2[/tex]

Then [tex]r = 6[/tex] in rectangular coordinates is a circle centered on the point (0,0) and with a constant radius [tex]r = 6[/tex].

(b) [tex]r = 2cos(\theta)[/tex]

The radius is not constant, the radius depends on [tex]\theta[/tex].

To convert this equation to rectangular coordinates we write

[tex]r = 2cos(\theta)[/tex]     Multiply both sides of the equality by r.

[tex]r ^ 2 = 2 *rcos(\theta)[/tex]     remember that [tex]x = rcos(\theta)[/tex], then:

[tex]r ^ 2 = 2x[/tex]        remember that [tex]x ^ 2 + y ^ 2 = r ^ 2[/tex], then:

[tex]x ^ 2 + y ^ 2 = 2x[/tex]         Simplify the expression.

[tex]x ^ 2 -2x + y ^ 2 = 0[/tex]     Complete the square.

[tex]x ^ 2 -2x + 1 + y ^ 2 = 1[/tex]

[tex](x-1) ^ 2 + y ^ 2 = 1[/tex]  It is a circle centered on the point (1, 0) and with radio [tex]r=1[/tex]

ACCESS MORE